HELMHOLTZ

A New Statistical Test for Volcanic Activity Variability on a 1.1 Myr Tephra from the NW Pacific

José Kling (GEOMAR/CAU Kiel)

Julie Schindlbeck-Belo Mathias Vetter Marion Jegen Steffen Kutterolf

Motivation

Does climate affect volcanism?

- Increased volcanic activity following last glacial cycle
- ightharpoonup Coinciding periodicities with $\delta^{18}O$ record
- Limited statistical methods

Data

- \triangleright Climate proxy LR04 $\delta^{18}O$ global reference stack
- 1.1 Myr tephra record from IODP hole 350-U1437B

Modeling

Point processes

- \triangleright Random events $(t_1, t_2, t_3, ...)$ over a fixed time interval [-T, 0]
- Conditional Intensity Function (CIF) Eruption rate at each instant

Four Hypotheses

Does the CIF depend on the climate proxy?

Goodness-of-fit test

Results

- > p-values: 0%, 0%, 5.5%, 8.7%
- First two hypotheses rejected
- Last two not rejected at a 95% level

Conclusions

Analysis of the data

- Eruption rate is not constant
- Clustering effect
- Behavior depends on composition of magma

The method

- Reliable even for small datasets
- Sound statistical procedure
- Flexibility any time frame or external factor

MATLAB code available at OceanRep – Point Process Tools
Kling et al. (2023) - Under review process for Frontiers of Earth Science

HELMHOLTZ

Thank you

Felsic eruptions

> p-values:6.56% and 19.01%

Mafic eruptions

> p-values:16.63% and 18.55%