

Links between climate and volcanism

José Kling

Julie Schindlbeck-Belo (GEOMAR)
Mathias Vetter (CAU)

Motivation

Does climate affect volcanism?

- Increased volcanic activity following last glacial cycle
- Coinciding periodicities between eruptions and climate cycles
- Limited statistical methods

Data

- ➤ 1.1 Myr tephra record from IODP hole 350-U1437B
- ➤ Climate proxy $-\delta^{18}O$ global reference stack

Influence of continuous time series on binary events?

Modeling

Point processes

- \triangleright Random events $(t_1, t_2, t_3, ...)$ on the time interval [-T, 0]
- Conditional Intensity Function (CIF) Eruption rate at each point in time

Four Hypotheses

events/year

What is the true conditional intensity function?

Hypothesis testing – known parameters

Hypothesis – True parameters θ_0

Key result – If $(t_1, ..., t_N)$ are events generated from $\lambda(\cdot; \theta)$, then

$$X_i = \int_{t_i}^{t_{i+1}} \lambda(s; \theta) ds$$

are i.i.d. unit exponential r.v.'s

Distance - $KS(\theta, (t_1, ..., t_N))$

Idea – Compare $KS(\theta_0, (t_1, ..., t_N))$ with $KS(\theta_0, (s_1, ..., s_N))$ where $(s_1, ..., s_N)$ where $(s_1, ..., s_N)$ are known to come from $\lambda(\cdot, \theta_0)$

Hypothesis testing – unknown parameters

Hypothesis – There is some θ_0 such that $\lambda(\cdot; \theta_0)$ is the true intensity

Current procedure

- 1. Estimate θ_0 from data as $\hat{\theta}$
- 2. Replace θ_0 by $\hat{\theta}$ in previous slide

Correct procedure

- 1. Estimate θ_0 from data as $\hat{\theta}$
- 2. Calculate $\kappa = KS(\hat{\theta}, (t_1, ..., t_N))$
- 3. Simulate 1000 events from $\lambda(\cdot; \hat{\theta})$
- 4. For each simulation, calculate κ_i as in steps 1 and 2, with $\hat{\theta}$ replacing θ_0
- 5. Compare κ with the κ_i 's

Hypothesis testing – comparison

Results – complete eruption record

> First two hypotheses rejected

> Last two not rejected at a 95% level

Results – different magma composition

Conclusions

Analysis of the data

- Eruption rate is not constant
- Clustering due to mafic eruptions Felsic eruptions dependent on climate

Advantages of the method

- Sound statistical procedure. Reliable even for small datasets
- Flexibility Earthquakes and tides. Other applications?

MATLAB code – OceanRep, Point Process Tools (DOI: 10.3289/SW_5_2023) Kling et al. (2023) - Under review process for Frontiers of Earth Science

HELMHOLTZ

Thank you

Four hypotheses - Parametrization

1. Constant eruption rate – Poisson process

$$\lambda_{HP}(t;\mu) = \mu$$

2. Dependent on climate – Inhomogeneous Poisson process

$$\lambda_{IP}(t; \mu, \gamma) = \mu + \gamma f(t)$$

3. Clustering – Hawkes process

$$\lambda_{HH}(t; \mu, \alpha, \beta) = \mu + \sum_{t_i < t} \alpha e^{-\beta(t - t_i)}$$

4. Clustering + climate – Inhomogeneous Hawkes process

$$\lambda_{IH}(t;\mu,\gamma,\alpha,\beta) = \mu + \gamma f(t) + \sum_{t_i < t} \alpha \, e^{-\beta(t-t_i)}$$